Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.787
1.
Proc Natl Acad Sci U S A ; 121(19): e2317753121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38687794

Type 1 voltage-activated calcium channels (CaV1) in the plasma membrane trigger calcium release from the sarcoplasmic reticulum (SR) by two mechanisms. In voltage-induced calcium release (VICR), CaV1 voltage sensing domains are directly coupled to ryanodine receptors (RYRs), an SR calcium channel. In calcium-induced calcium release (CICR), calcium ions flowing through activated CaV1 channels bind and activate RYR channels. VICR is thought to occur exclusively in vertebrate skeletal muscle while CICR occurs in all other muscles (including all invertebrate muscles). Here, we use calcium-activated SLO-2 potassium channels to analyze CaV1-SR coupling in Caenorhabditis elegans body muscles. SLO-2 channels were activated by both VICR and external calcium. VICR-mediated SLO-2 activation requires two SR calcium channels (RYRs and IP3 Receptors), JPH-1/Junctophilin, a PDZ (PSD95, Dlg1, ZO-1 domain) binding domain (PBD) at EGL-19/CaV1's carboxy-terminus, and SHN-1/Shank (a scaffolding protein that binds EGL-19's PBD). Thus, VICR occurs in invertebrate muscles.


Caenorhabditis elegans Proteins , Caenorhabditis elegans , Calcium Channels , Calcium , Membrane Transport Proteins , Muscle Proteins , Ryanodine Receptor Calcium Release Channel , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Calcium/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism , Muscles/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Membrane Proteins/metabolism , Calcium Signaling/physiology
2.
Chem Pharm Bull (Tokyo) ; 72(4): 399-407, 2024.
Article En | MEDLINE | ID: mdl-38644198

Ryanodine receptor 2 (RyR2) is a large Ca2+-release channel in the sarcoplasmic reticulum (SR) of cardiac muscle cells. It serves to release Ca2+ from the SR into the cytosol to initiate muscle contraction. RyR2 overactivation is associated with arrhythmogenic cardiac disease, but few specific inhibitors have been reported so far. Here, we identified an RyR2-selective inhibitor 1 from the chemical compound library and synthesized it from glycolic acid. Synthesis of various derivatives to investigate the structure-activity relationship of each substructure afforded another two RyR2-selective inhibitors 6 and 7, among which 6 was the most potent. Notably, compound 6 also inhibited Ca2+ release in cells expressing the RyR2 mutants R2474S, R4497C and K4750Q, which are associated with cardiac arrhythmias such as catecholaminergic polymorphic ventricular tachycardia (CPVT). This inhibitor is expected to be a useful tool for research on the structure and dynamics of RyR2, as well as a lead compound for the development of drug candidates to treat RyR2-related cardiac disease.


Calcium Channel Blockers , Ryanodine Receptor Calcium Release Channel , Humans , Calcium/metabolism , Dose-Response Relationship, Drug , Drug Discovery , HEK293 Cells , Molecular Structure , Ryanodine Receptor Calcium Release Channel/drug effects , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Structure-Activity Relationship , Calcium Channel Blockers/chemistry , Calcium Channel Blockers/pharmacology , Anti-Arrhythmia Agents/chemistry , Anti-Arrhythmia Agents/pharmacology , Tachycardia, Ventricular/drug therapy , Tachycardia, Ventricular/genetics
3.
Nat Commun ; 15(1): 3528, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664444

Cardiac dysfunction is a hallmark of aging in humans and mice. Here we report that a two-week treatment to restore youthful Bridging Integrator 1 (BIN1) levels in the hearts of 24-month-old mice rejuvenates cardiac function and substantially reverses the aging phenotype. Our data indicate that age-associated overexpression of BIN1 occurs alongside dysregulated endosomal recycling and disrupted trafficking of cardiac CaV1.2 and type 2 ryanodine receptors. These deficiencies affect channel function at rest and their upregulation during acute stress. In vivo echocardiography reveals reduced systolic function in old mice. BIN1 knockdown using an adeno-associated virus serotype 9 packaged shRNA-mBIN1 restores the nanoscale distribution and clustering plasticity of ryanodine receptors and recovers Ca2+ transient amplitudes and cardiac systolic function toward youthful levels. Enhanced systolic function correlates with increased phosphorylation of the myofilament protein cardiac myosin binding protein-C. These results reveal BIN1 knockdown as a novel therapeutic strategy to rejuvenate the aging myocardium.


Adaptor Proteins, Signal Transducing , Aging , Myocardium , Nerve Tissue Proteins , Ryanodine Receptor Calcium Release Channel , Tumor Suppressor Proteins , Animals , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Male , Aging/metabolism , Mice , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Myocardium/metabolism , Myocardium/pathology , Ryanodine Receptor Calcium Release Channel/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Gene Knockdown Techniques , Endosomes/metabolism , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/genetics , Heart/physiopathology , Mice, Inbred C57BL , Humans , Myocytes, Cardiac/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Systole
4.
Proc Natl Acad Sci U S A ; 121(17): e2218204121, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38621141

Inherited arrhythmia syndromes (IASs) can cause life-threatening arrhythmias and are responsible for a significant proportion of sudden cardiac deaths (SCDs). Despite progress in the development of devices to prevent SCDs, the precise molecular mechanisms that induce detrimental arrhythmias remain to be fully investigated, and more effective therapies are desirable. In the present study, we screened a large-scale randomly mutagenized mouse library by electrocardiography to establish a disease model of IASs and consequently found one pedigree that exhibited spontaneous ventricular arrhythmias (VAs) followed by SCD within 1 y after birth. Genetic analysis successfully revealed a missense mutation (p.I4093V) of the ryanodine receptor 2 gene to be a cause of the arrhythmia. We found an age-related increase in arrhythmia frequency accompanied by cardiomegaly and decreased ventricular contractility in the Ryr2I4093V/+ mice. Ca2+ signaling analysis and a ryanodine binding assay indicated that the mutant ryanodine receptor 2 had a gain-of-function phenotype and enhanced Ca2+ sensitivity. Using this model, we detected the significant suppression of VA following flecainide or dantrolene treatment. Collectively, we established an inherited life-threatening arrhythmia mouse model from an electrocardiogram-based screen of randomly mutagenized mice. The present IAS model may prove feasible for use in investigating the mechanisms of SCD and assessing therapies.


Tachycardia, Ventricular , Mice , Animals , Ryanodine Receptor Calcium Release Channel/metabolism , Arrhythmias, Cardiac/genetics , Flecainide , Mutation, Missense , Death, Sudden, Cardiac , Mutation
5.
Proc Natl Acad Sci U S A ; 121(11): e2315989121, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38451948

PD1 blockade therapy, harnessing the cytotoxic potential of CD8+ T cells, has yielded clinical success in treating malignancies. However, its efficacy is often limited due to the progressive differentiation of intratumoral CD8+ T cells into a hypofunctional state known as terminal exhaustion. Despite identifying CD8+ T cell subsets associated with immunotherapy resistance, the molecular pathway triggering the resistance remains elusive. Given the clear association of CD38 with CD8+ T cell subsets resistant to anti-PD1 therapy, we investigated its role in inducing resistance. Phenotypic and functional characterization, along with single-cell RNA sequencing analysis of both in vitro chronically stimulated and intratumoral CD8+ T cells, revealed that CD38-expressing CD8+ T cells are terminally exhausted. Exploring the molecular mechanism, we found that CD38 expression was crucial in promoting terminal differentiation of CD8+ T cells by suppressing TCF1 expression, thereby rendering them unresponsive to anti-PD1 therapy. Genetic ablation of CD38 in tumor-reactive CD8+ T cells restored TCF1 levels and improved the responsiveness to anti-PD1 therapy in mice. Mechanistically, CD38 expression on exhausted CD8+ T cells elevated intracellular Ca2+ levels through RyR2 calcium channel activation. This, in turn, promoted chronic AKT activation, leading to TCF1 loss. Knockdown of RyR2 or inhibition of AKT in CD8+ T cells maintained TCF1 levels, induced a sustained anti-tumor response, and enhanced responsiveness to anti-PD1 therapy. Thus, targeting CD38 represents a potential strategy to improve the efficacy of anti-PD1 treatment in cancer.


CD8-Positive T-Lymphocytes , Neoplasms , Mice , Animals , CD8-Positive T-Lymphocytes/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , T-Lymphocyte Subsets/metabolism
6.
Sci Adv ; 10(12): eadl1126, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38507485

Excitation-contraction coupling (ECC) is a fundamental mechanism in control of skeletal muscle contraction and occurs at triad junctions, where dihydropyridine receptors (DHPRs) on transverse tubules sense excitation signals and then cause calcium release from the sarcoplasmic reticulum via coupling to type 1 ryanodine receptors (RyR1s), inducing the subsequent contraction of muscle filaments. However, the molecular mechanism remains unclear due to the lack of structural details. Here, we explored the architecture of triad junction by cryo-electron tomography, solved the in situ structure of RyR1 in complex with FKBP12 and calmodulin with the resolution of 16.7 Angstrom, and found the intact RyR1-DHPR supercomplex. RyR1s arrange into two rows on the terminal cisternae membrane by forming right-hand corner-to-corner contacts, and tetrads of DHPRs bind to RyR1s in an alternating manner, forming another two rows on the transverse tubule membrane. This unique arrangement is important for synergistic calcium release and provides direct evidence of physical coupling in ECC.


Calcium , Ryanodine Receptor Calcium Release Channel , Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/metabolism , Calcium/metabolism , Muscle, Skeletal/metabolism , Calcium Channels, L-Type/analysis , Calcium Channels, L-Type/metabolism , Sarcoplasmic Reticulum/metabolism , Muscle Contraction/physiology
7.
Insect Biochem Mol Biol ; 168: 104107, 2024 May.
Article En | MEDLINE | ID: mdl-38492676

The diamondback moth Plutella xylostella, a global insect pest of cruciferous vegetables, has evolved resistance to many classes of insecticides including diamides. Three point mutations (I4790M, I4790K, and G4946E) in the ryanodine receptor of P. xylostella (PxRyR) have been identified to associate with varying levels of resistance. In this study, we generated a knockin strain (I4790K-KI) of P. xylostella, using CRISPR/Cas9 to introduce the I4790K mutation into PxRyR of the susceptible IPP-S strain. Compared to IPP-S, the edited I4790K-KI strain exhibited high levels of resistance to both anthranilic diamides (chlorantraniliprole 1857-fold, cyantraniliprole 1433-fold) and the phthalic acid diamide flubendiamide (>2272-fold). Resistance to chlorantraniliprole in the I4790K-KI strain was inherited in an autosomal and recessive mode, and genetically linked with the I4790K knockin mutation. Computational modeling suggests the I4790K mutation reduces the binding of diamides to PxRyR by disrupting key hydrogen bonding interactions within the binding cavity. The approximate frequencies of the 4790M, 4790K, and 4946E alleles were assessed in ten geographical field populations of P. xylostella collected in China in 2021. The levels of chlorantraniliprole resistance (2.3- to 1444-fold) in these populations were significantly correlated with the frequencies (0.017-0.917) of the 4790K allele, but not with either 4790M (0-0.183) or 4946E (0.017-0.450) alleles. This demonstrates that the PxRyR I4790K mutation is currently the major contributing factor to chlorantraniliprole resistance in P. xylostella field populations within China. Our findings provide in vivo functional evidence for the causality of the I4790K mutation in PxRyR with high levels of diamide resistance in P. xylostella, and suggest that tracking the frequency of the I4790K allele is crucial for optimizing the monitoring and management of diamide resistance in this crop pest.


Diamide , Insecticide Resistance , Moths , Animals , Diamide/pharmacology , Insecticide Resistance/genetics , Insecticides/pharmacology , Insecticides/metabolism , Moths/genetics , Moths/metabolism , Mutation , ortho-Aminobenzoates/pharmacology , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism
8.
Cells ; 13(6)2024 Mar 08.
Article En | MEDLINE | ID: mdl-38534320

The ubiquitous second messenger 3',5'-cyclic adenosine monophosphate (cAMP) regulates cardiac excitation-contraction coupling (ECC) by signaling in discrete subcellular microdomains. Phosphodiesterase subfamilies 4B and 4D are critically involved in the regulation of cAMP signaling in mammalian cardiomyocytes. Alterations of PDE4 activity in human hearts has been shown to result in arrhythmias and heart failure. Here, we sought to systematically investigate specific roles of PDE4B and PDE4D in the regulation of cAMP dynamics in three distinct subcellular microdomains, one of them located at the caveolin-rich plasma membrane which harbors the L-type calcium channels (LTCCs), as well as at two sarco/endoplasmic reticulum (SR) microdomains centered around SR Ca2+-ATPase (SERCA2a) and cardiac ryanodine receptor type 2 (RyR2). Transgenic mice expressing Förster Resonance Energy Transfer (FRET)-based cAMP-specific biosensors targeted to caveolin-rich plasma membrane, SERCA2a and RyR2 microdomains were crossed to PDE4B-KO and PDE4D-KO mice. Direct analysis of the specific effects of both PDE4 subfamilies on local cAMP dynamics was performed using FRET imaging. Our data demonstrate that all three microdomains are differentially regulated by these PDE4 subfamilies. Whereas both are involved in cAMP regulation at the caveolin-rich plasma membrane, there are clearly two distinct cAMP microdomains at the SR formed around RyR2 and SERCA2a, which are preferentially controlled by PDE4B and PDE4D, respectively. This correlates with local cAMP-dependent protein kinase (PKA) substrate phosphorylation and arrhythmia susceptibility. Immunoprecipitation assays confirmed that PDE4B is associated with RyR2 along with PDE4D. Stimulated Emission Depletion (STED) microscopy of immunostained cardiomyocytes suggested possible co-localization of PDE4B with both sarcolemmal and RyR2 microdomains. In conclusion, our functional approach could show that both PDE4B and PDE4D can differentially regulate cardiac cAMP microdomains associated with calcium homeostasis. PDE4B controls cAMP dynamics in both caveolin-rich plasma membrane and RyR2 vicinity. Interestingly, PDE4B is the major regulator of the RyR2 microdomain, as opposed to SERCA2a vicinity, which is predominantly under PDE4D control, suggesting a more complex regulatory pattern than previously thought, with multiple PDEs acting at the same location.


Calcium , Ryanodine Receptor Calcium Release Channel , Mice , Humans , Animals , Calcium/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Cyclic AMP/metabolism , Myocytes, Cardiac/metabolism , Mice, Transgenic , Caveolins/metabolism , Mammals/metabolism
9.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article En | MEDLINE | ID: mdl-38542460

Malignant hyperthermia (MH) is a pharmacogenetic condition of skeletal muscle that manifests in hypermetabolic responses upon exposure to volatile anaesthetics. This condition is caused primarily by pathogenic variants in the calcium-release channel RYR1, which disrupts calcium signalling in skeletal muscle. However, our understanding of MH genetics is incomplete, with no variant identified in a significant number of cases and considerable phenotype diversity. In this study, we applied a transcriptomic approach to investigate the genome-wide gene expression in MH-susceptible cases using muscle biopsies taken for diagnostic testing. Baseline comparisons between muscle from MH-susceptible individuals (MHS, n = 8) and non-susceptible controls (MHN, n = 4) identified 822 differentially expressed genes (203 upregulated and 619 downregulated) with significant enrichment in genes associated with oxidative phosphorylation (OXPHOS) and fatty acid metabolism. Investigations of 10 OXPHOS target genes in a larger cohort (MHN: n = 36; MHS: n = 36) validated the reduced expression of ATP5MD and COQ6 in MHS samples, but the remaining 8 selected were not statistically significant. Further analysis also identified evidence of a sex-linked effect in SDHB and UQCC3 expression, and a difference in ATP5MD expression across individuals with MH sub-phenotypes (trigger from in vitro halothane exposure only, MHSh (n = 4); trigger to both in vitro halothane and caffeine exposure, MHShc (n = 4)). Our data support a link between MH-susceptibility and dysregulated gene expression associated with mitochondrial bioenergetics, which we speculate plays a role in the phenotypic variability observed within MH.


Malignant Hyperthermia , Humans , Malignant Hyperthermia/genetics , Malignant Hyperthermia/metabolism , Halothane/pharmacology , Halothane/metabolism , Oxidative Phosphorylation , Calcium/metabolism , Muscle, Skeletal/metabolism , Disease Susceptibility/metabolism , Biopsy , Gene Expression , Muscle Contraction , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Carrier Proteins/metabolism
10.
Mol Metab ; 82: 101914, 2024 Apr.
Article En | MEDLINE | ID: mdl-38479548

OBJECTIVE: The intrauterine environment during pregnancy is a critical factor in the development of obesity, diabetes, and cardiovascular disease in offspring. Maternal exercise prevents the detrimental effects of a maternal high fat diet on the metabolic health in adult offspring, but the effects of maternal exercise on offspring cardiovascular health have not been thoroughly investigated. METHODS: To determine the effects of maternal exercise on offspring cardiovascular health, female mice were fed a chow (C; 21% kcal from fat) or high-fat (H; 60% kcal from fat) diet and further subdivided into sedentary (CS, HS) or wheel exercised (CW, HW) prior to pregnancy and throughout gestation. Offspring were maintained in a sedentary state and chow-fed throughout 52 weeks of age and subjected to serial echocardiography and cardiomyocyte isolation for functional and mechanistic studies. RESULTS: High-fat fed sedentary dams (HS) produced female offspring with reduced ejection fraction (EF) compared to offspring from chow-fed dams (CS), but EF was preserved in offspring from high-fat fed exercised dams (HW) throughout 52 weeks of age. Cardiomyocytes from HW female offspring had increased kinetics, calcium cycling, and respiration compared to CS and HS offspring. HS offspring had increased oxidation of the RyR2 in cardiomyocytes coupled with increased baseline sarcomere length, resulting in RyR2 overactivity, which was negated in female HW offspring. CONCLUSIONS: These data suggest a role for maternal exercise to protect against the detrimental effects of a maternal high-fat diet on female offspring cardiac health. Maternal exercise improved female offspring cardiomyocyte contraction, calcium cycling, respiration, RyR2 oxidation, and RyR2 activity. These data present an important, translatable role for maternal exercise to preserve cardiac health of female offspring and provide insight on mechanisms to prevent the transmission of cardiovascular diseases to subsequent generations.


Calcium , Ryanodine Receptor Calcium Release Channel , Pregnancy , Mice , Female , Animals , Ryanodine Receptor Calcium Release Channel/metabolism , Calcium/metabolism , Obesity/metabolism , Diet, High-Fat/adverse effects , Oxidative Stress
11.
J Membr Biol ; 257(1-2): 37-50, 2024 Apr.
Article En | MEDLINE | ID: mdl-38460011

In skeletal muscle, the Ca2+ release flux elicited by a voltage clamp pulse rises to an early peak that inactivates rapidly to a much lower steady level. Using a double pulse protocol the fast inactivation follows an arithmetic rule: if the conditioning depolarization is less than or equal to the test depolarization, then decay (peak minus steady level) in the conditioning release is approximately equal to suppression (unconditioned minus conditioned peak) of the test release. This is due to quantal activation by voltage, analogous to the quantal activation of IP3 receptor channels. Two mechanisms are possible. One is the existence of subsets of channels with different sensitivities to voltage. The other is that the clusters of Ca2+-gated Ryanodine Receptor (RyR) ß in the parajunctional terminal cisternae might constitute the quantal units. These Ca2+-gated channels are activated by the release of Ca2+ through the voltage-gated RyR α channels. If the RyR ß were at the basis of quantal release, it should be modified by strong inhibition of the primary voltage-gated release. This was attained in two ways, by sarcoplasmic reticulum (SR) Ca2+ depletion and by voltage-dependent inactivation. Both procedures reduced global Ca2+ release flux, but SR Ca2+ depletion reduced the single RyR current as well. The effect of both interventions on the quantal properties of Ca2+ release in frog skeletal muscle fibers were studied under voltage clamp. The quantal properties of release were preserved regardless of the inhibitory maneuver applied. These findings put a limit on the role of the Ca2+-activated component of release in generating quantal activation.


Muscle, Skeletal , Sarcoplasmic Reticulum , Sarcoplasmic Reticulum/metabolism , Muscle, Skeletal/metabolism , Muscle Fibers, Skeletal/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Ryanodine Receptor Calcium Release Channel/pharmacology , Calcium Signaling , Calcium/metabolism
12.
J Agric Food Chem ; 72(14): 8072-8080, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38547359

To increase the structural diversity of insecticides and meet the needs of effective integrated insect management, the structure of chlorantraniliprole was modified based on a previously established three-dimensional quantitative structure-activity relationship (3D-QSAR) model. The pyridinyl moiety in the structure of chlorantraniliprole was replaced with a 4-fluorophenyl group. Further modifications of this 4-fluorophenyl group by introducing a halogen atom at position 2 and an electron-withdrawing group (e.g., iodine, cyano, and trifluoromethyl) at position 5 led to 34 compounds with good insecticidal efficacy against Mythimna separata, Plutella xylostella, and Spodoptera frugiperda. Among them, compound IV f against M. separata showed potency comparable to that of chlorantraniliprole. IV p against P. xylostella displayed a 4.5 times higher potency than chlorantraniliprole. In addition, IV d and chlorantraniliprole exhibited comparable potencies against S. frugiperda. Transcriptome analysis showed that the molecular target of compound IV f is the ryanodine receptor. Molecular docking was further performed to verify the mode of action and insecticidal activity against resistant P. xylostella.


Insecticides , Moths , Animals , Insecticides/pharmacology , Insecticides/chemistry , Diamide/pharmacology , Diamide/chemistry , Molecular Docking Simulation , Moths/metabolism , ortho-Aminobenzoates/pharmacology , ortho-Aminobenzoates/chemistry , Quantitative Structure-Activity Relationship , Ryanodine Receptor Calcium Release Channel/metabolism , Larva/metabolism
15.
Int J Biol Macromol ; 260(Pt 1): 129424, 2024 Mar.
Article En | MEDLINE | ID: mdl-38219929

Calcins are a group of scorpion toxin peptides specifically binding to ryanodine receptors (RyRs) with high affinity, and have the ability to activate and stabilize RyR in a long-lasting subconductance state. Five newly calcins synthesized compounds exhibit typical structural characteristics of a specific family through chemical synthesis and virtual analysis. As the calcins from the same species, Petersiicalcin1 and Petersiicalcin2, Jendekicalcin2 and Jendekicalcin3, have only one residue difference. Both Petersiicalcin1 and Petersiicalcin2 exhibited different affinities in stimulating [3H]ryanodine binding, but the residue mutation resulted in a 2.7 folds difference. Other calcins also exhibited a stimulatory effect on [3H]ryanodine binding to RyR1, however, their affinities were significantly lower than that of Petersiiicalcin1 and Petersiiicalcin2. The channel domain of RyR1 was found to be capable of binding with the basic residues of these calcins, which also exhibited interactions with the S6 helices on RyR1. Dynamic simulations were conducted for Petersiicalcin1 and Petersiicalcin2, which demonstrated their ability to form a highly stable conformation and resulting in an asymmetric tetramer structure of RyR1. The discovery of five newly calcins further enriches the diversity of the natural calcin family, which provides more native peptides for the structure-function analysis between calcin and RyRs.


Peptides , Ryanodine Receptor Calcium Release Channel , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/metabolism , Amino Acid Sequence , Ryanodine/metabolism , Ryanodine/pharmacology , Peptides/chemistry , Protein Structure, Secondary , Calcium/metabolism , Muscle, Skeletal
16.
Acta Physiol (Oxf) ; 240(3): e14098, 2024 Mar.
Article En | MEDLINE | ID: mdl-38240476

AIM: A fraction of the Ca2+ released from the sarcoplasmic reticulum (SR) enters mitochondria to transiently increase its [Ca2+ ] ([Ca2+ ]mito ). This transient [Ca2+ ]mito increase may be important in the resynthesis of ATP and other processes. The resynthesis of ATP in the mitochondria generates heat that can lead to hypermetabolic reactions in muscle with ryanodine receptor 1 (RyR1) variants during the cyclic releasing of SR Ca2+ in the presence of a RyR1 agonist. We aimed to analyse whether the mitochondria of RYR1 variant muscle handles Ca2+ differently from healthy muscle. METHODS: We used confocal microscopy to track mitochondrial and cytoplasmic Ca2+ with fluorescent dyes simultaneously during caffeine-induced Ca2+ waves in extensor digitorum longus muscle fibres from healthy mice and mice heterozygous (HET) for a malignant hyperthermia-causative RYR1 variant. RESULTS: Mitochondrial Ca2+ -transient peaks trailed the peak of cytoplasmic Ca2+ transients by many seconds with [Ca2+ ]mito not increasing by more than 250 nM. A strong linear relationship between cytoplasmic Ca2+ and [Ca2+ ]mito amplitudes was observed in HET RYR1 KI fibres but not wild type (WT). CONCLUSION: Our results indicate that [Ca2+ ]mito change within the nM range during SR Ca2+ release. HET fibre mitochondria are more sensitive to SR Ca2+ release flux than WT. This may indicate post-translation modification differences of the mitochondrial Ca2+ uniporter between the genotypes.


Gain of Function Mutation , Ryanodine Receptor Calcium Release Channel , Animals , Mice , Adenosine Triphosphate/metabolism , Mitochondria , Muscle Fibers, Skeletal/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism
17.
Redox Biol ; 70: 103044, 2024 Apr.
Article En | MEDLINE | ID: mdl-38266577

Hyperglycemia increases the heart sensitivity to ischemia-reperfusion (IR), but the underlying cellular mechanisms remain unclear. Mitochondrial dynamics (the processes that govern mitochondrial morphology and their interactions with other organelles, such as the reticulum), has emerged as a key factor in the heart vulnerability to IR. However, it is unknown whether mitochondrial dynamics contributes to hyperglycemia deleterious effect during IR. We hypothesized that (i) the higher heart vulnerability to IR in hyperglycemic conditions could be explained by hyperglycemia effect on the complex interplay between mitochondrial dynamics, Ca2+ homeostasis, and reactive oxygen species (ROS) production; and (ii) the activation of DRP1, a key regulator of mitochondrial dynamics, could play a central role. Using transmission electron microscopy and proteomic analysis, we showed that the interactions between sarcoplasmic reticulum and mitochondria and mitochondrial fission were increased during IR in isolated rat hearts perfused with a hyperglycemic buffer compared with hearts perfused with a normoglycemic buffer. In isolated mitochondria and cardiomyocytes, hyperglycemia increased mitochondrial ROS production and Ca2+ uptake. This was associated with higher RyR2 instability. These results could contribute to explain the early mPTP activation in mitochondria from isolated hearts perfused with a hyperglycemic buffer and in hearts from streptozotocin-treated rats (to increase the blood glucose). DRP1 inhibition by Mdivi-1 during the hyperglycemic phase and before IR induction, normalized Ca2+ homeostasis, ROS production, mPTP activation, and reduced the heart sensitivity to IR in streptozotocin-treated rats. In conclusion, hyperglycemia-dependent DRP1 activation results in higher reticulum-mitochondria calcium exchange that contribute to the higher heart vulnerability to IR.


Dynamins , Myocardial Reperfusion Injury , Ryanodine Receptor Calcium Release Channel , Animals , Rats , Calcium/metabolism , Coronary Artery Disease/metabolism , Hyperglycemia/metabolism , Mitochondria, Heart/metabolism , Mitochondrial Dynamics , Myocardial Reperfusion Injury/metabolism , Proteomics , Reactive Oxygen Species/metabolism , Reperfusion , Ryanodine Receptor Calcium Release Channel/metabolism , Streptozocin/metabolism , Streptozocin/pharmacology , Dynamins/metabolism
18.
J Cachexia Sarcopenia Muscle ; 15(2): 536-551, 2024 Apr.
Article En | MEDLINE | ID: mdl-38221511

BACKGROUND: Duchenne muscular dystrophy (DMD) is an X-linked disorder characterized by progressive muscle weakness due to the absence of functional dystrophin. DMD patients also develop dilated cardiomyopathy (DCM). We have previously shown that DMD (mdx) mice and a canine DMD model (GRMD) exhibit abnormal intracellular calcium (Ca2+) cycling related to early-stage pathological remodelling of the ryanodine receptor intracellular calcium release channel (RyR2) on the sarcoplasmic reticulum (SR) contributing to age-dependent DCM. METHODS: Here, we used hiPSC-CMs from DMD patients selected by Speckle-tracking echocardiography and canine DMD cardiac biopsies to assess key early-stage Duchenne DCM features. RESULTS: Dystrophin deficiency was associated with RyR2 remodelling and SR Ca2+ leak (RyR2 Po of 0.03 ± 0.01 for HC vs. 0.16 ± 0.01 for DMD, P < 0.01), which led to early-stage defects including senescence. We observed higher levels of senescence markers including p15 (2.03 ± 0.75 for HC vs. 13.67 ± 5.49 for DMD, P < 0.05) and p16 (1.86 ± 0.83 for HC vs. 10.71 ± 3.00 for DMD, P < 0.01) in DMD hiPSC-CMs and in the canine DMD model. The fibrosis was increased in DMD hiPSC-CMs. We observed cardiac hypocontractility in DMD hiPSC-CMs. Stabilizing RyR2 pharmacologically by S107 prevented most of these pathological features, including the rescue of the contraction amplitude (1.65 ± 0.06 µm for DMD vs. 2.26 ± 0.08 µm for DMD + S107, P < 0.01). These data were confirmed by proteomic analyses, in particular ECM remodelling and fibrosis. CONCLUSIONS: We identified key cellular damages that are established earlier than cardiac clinical pathology in DMD patients, with major perturbation of the cardiac ECC. Our results demonstrated that cardiac fibrosis and premature senescence are induced by RyR2 mediated SR Ca2+ leak in DMD cardiomyocytes. We revealed that RyR2 is an early biomarker of DMD-associated cardiac damages in DMD patients. The progressive and later DCM onset could be linked with the RyR2-mediated increased fibrosis and premature senescence, eventually causing cell death and further cardiac fibrosis in a vicious cycle leading to further hypocontractility as a major feature of DCM. The present study provides a novel understanding of the pathophysiological mechanisms of the DMD-induced DCM. By targeting RyR2 channels, it provides a potential pharmacological treatment.


Cardiomyopathies , Cardiomyopathy, Dilated , Humans , Mice , Animals , Dogs , Cardiomyopathy, Dilated/etiology , Dystrophin/genetics , Dystrophin/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Mice, Inbred mdx , Calcium/metabolism , Proteomics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Fibrosis
19.
Mol Pharmacol ; 105(3): 194-201, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38253398

Intracellular Ca2+ leak from cardiac ryanodine receptor (RyR2) is an established mechanism of sudden cardiac death (SCD), whereby dysregulated Ca2+ handling causes ventricular arrhythmias. We previously discovered the RyR2-selective inhibitor ent-(+)-verticilide (ent-1), a 24-membered cyclooligomeric depsipeptide that is the enantiomeric form of a natural product (nat-(-)-verticilide). Here, we examined its 18-membered ring-size oligomer (ent-verticilide B1; "ent-B1") in RyR2 single channel and [3H]ryanodine binding assays, and in Casq2 -/- cardiomyocytes and mice, a gene-targeted model of SCD. ent-B1 inhibited RyR2 single channels and RyR2-mediated spontaneous Ca2+ release in Casq2 -/- cardiomyocytes with sub-micromolar potency. ent-B1 was a partial RyR2 inhibitor, with maximal inhibitory efficacy of less than 50%. ent-B1 was stable in plasma, with a peak plasma concentration of 1460 ng/ml at 10 minutes and half-life of 45 minutes after intraperitoneal administration of 3 mg/kg in mice. In vivo, ent-B1 significantly reduced catecholamine-induced ventricular arrhythmias in Casq2 -/- mice in a dose-dependent manner. Hence, we have identified a novel chemical entity - ent-B1 - that preserves the mechanism of action of a hit compound and shows therapeutic efficacy. These findings strengthen RyR2 as an antiarrhythmic drug target and highlight the potential of investigating the mirror-image isomers of natural products to discover new therapeutics. SIGNIFICANCE STATEMENT: The cardiac ryanodine receptor (RyR2) is an untapped target in the stagnant field of antiarrhythmic drug development. We have confirmed RyR2 as an antiarrhythmic target in a mouse model of sudden cardiac death and shown the therapeutic efficacy of a second enantiomeric natural product.


Biological Products , Depsipeptides , Mice , Animals , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/metabolism , Depsipeptides/metabolism , Depsipeptides/therapeutic use , Death, Sudden, Cardiac/etiology , Myocytes, Cardiac/metabolism , Calcium/metabolism
20.
Cardiovasc Res ; 120(6): 596-611, 2024 May 07.
Article En | MEDLINE | ID: mdl-38198753

AIMS: A mechanistic link between depression and risk of arrhythmias could be attributed to altered catecholamine metabolism in the heart. Monoamine oxidase-A (MAO-A), a key enzyme involved in catecholamine metabolism and longstanding antidepressant target, is highly expressed in the myocardium. The present study aimed to elucidate the functional significance and underlying mechanisms of cardiac MAO-A in arrhythmogenesis. METHODS AND RESULTS: Analysis of the TriNetX database revealed that depressed patients treated with MAO inhibitors had a lower risk of arrhythmias compared with those treated with selective serotonin reuptake inhibitors. This effect was phenocopied in mice with cardiomyocyte-specific MAO-A deficiency (cMAO-Adef), which showed a significant reduction in both incidence and duration of catecholamine stress-induced ventricular tachycardia compared with wild-type mice. Additionally, cMAO-Adef cardiomyocytes exhibited altered Ca2+ handling under catecholamine stimulation, with increased diastolic Ca2+ reuptake, reduced diastolic Ca2+ leak, and diminished systolic Ca2+ release. Mechanistically, cMAO-Adef hearts had reduced catecholamine levels under sympathetic stress, along with reduced levels of reactive oxygen species and protein carbonylation, leading to decreased oxidation of Type II PKA and CaMKII. These changes potentiated phospholamban (PLB) phosphorylation, thereby enhancing diastolic Ca2+ reuptake, while reducing ryanodine receptor 2 (RyR2) phosphorylation to decrease diastolic Ca2+ leak. Consequently, cMAO-Adef hearts exhibited lower diastolic Ca2+ levels and fewer arrhythmogenic Ca2+ waves during sympathetic overstimulation. CONCLUSION: Cardiac MAO-A inhibition exerts an anti-arrhythmic effect by enhancing diastolic Ca2+ handling under catecholamine stress.


Calcium Signaling , Calcium-Binding Proteins , Calcium , Catecholamines , Disease Models, Animal , Monoamine Oxidase Inhibitors , Monoamine Oxidase , Myocytes, Cardiac , Ryanodine Receptor Calcium Release Channel , Animals , Monoamine Oxidase/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Catecholamines/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Calcium Signaling/drug effects , Ryanodine Receptor Calcium Release Channel/metabolism , Humans , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Calcium/metabolism , Male , Mice, Knockout , Tachycardia, Ventricular/enzymology , Tachycardia, Ventricular/prevention & control , Tachycardia, Ventricular/metabolism , Tachycardia, Ventricular/physiopathology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Mice, Inbred C57BL , Phosphorylation , Reactive Oxygen Species/metabolism , Heart Rate/drug effects , Female , Diastole/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism , Action Potentials/drug effects , Cells, Cultured , Mice
...